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History of Cyber Attacks in Korea (in Part)

2009
• 77DDoS happened

2010
• Military HQ for Cyber Security established

2011

• Law on Personal Privacy enforced

• 34DDoS happened

2012
• Information Security day, 2nd Wed. in July 

2013

• 320 Cyber terror to Korean Banks, etc

• 625 Cyber terror to Web page@BH. etc

2014

• 100 Million personal informations leaked in 3 major credit cards

• KEPCO hacking

3rd Asiacrypt2011 in Korea

http://ko.wikipedia.org/wiki/7%C2%B77_DDoS_%EA%B3%B5%EA%B2%A9
http://blog.estsoft.co.kr/65
http://www.trendmicro.co.kr/kr/support/blog/compromised-auto-update-mechanism-affects-south-korean-users/index.html
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Global Attacks in 2016 (1/2)

Global Leaks During 2016*

https://www-01.ibm.com/marketing/iwm/dre/signup?source=urx-13655&S_PKG=ov57325

https://www-01.ibm.com/marketing/iwm/dre/signup?source=urx-13655&S_PKG=ov57325
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Global Attack in 2016 (2/2)

How to secure our networks?

Sampling of attack types*

https://www-01.ibm.com/marketing/iwm/dre/signup?source=urx-13655&S_PKG=ov57325

https://www-01.ibm.com/marketing/iwm/dre/signup?source=urx-13655&S_PKG=ov57325
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Firewall vs IDS
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Types of IDS (location)  (1/2)

• Network-based

• Host-based

• Hybrid
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Types of IDS (methodology) (2/2)

• Misuse-based: detects any attack by checking whether the attack
characteristics match previously stored signatures or patterns.
This also known as signature-based IDS.

• Anomaly-based: identifies malicious activities by profiling normal
behavior and then measuring any deviation from it. It leverages s
tatistical analysis or machine-learning.

• Specification-based: manually defines a set of rules and constrain
ts to express the normal operations. Any violation of the rules
and constraints during execution is flagged as an attack.
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Comparion of IDS

Misuse-based Anomaly-based Specification-based

Method
Identify known attack     

patterns
Identify unusual        
activity patterns

Identify violation of    
pre-defined rules

Detection Rate High Low High

False Alarm Rate Low High Low

Unknown Attack  
Detection

Incapable Capable Incapable

Drawbacks
Updating signatures  

is burdensome

Computing any stat
istical or machine-
learning is heavy

Relying on expert       
knowledge to define    
rules is undesirable
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Learning : Supervised vs  Unsupervised

• Unknown attack detection: Detects new attacks without prior 
knowledge

Supervised Unsupervised

Definition
The data are labeled with        

pre-defined classes.
The data are labeled without

pre-defined classes

Method Classification Clustering

Example
• Support Vector Machine (SVM)
• Decision Tree (DT)
• Fuzzy Inference System (FIS)

• k-means Clustering, 
• Density-based Spatial Clustering of A

pplications with Noise (DBSCAN) 
• Ant Clustering Algorithm (ACA)

Known Attack DR High Low

Unknown Attack DR Low High
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Tree of Deep Learning

• ANN, SAE, RBM, DBN, CNN, etc

Figure from Aminanto, M.E. and Kim, K.J., “Deep Learning in Intrusion Detection System: An 

Overview”, International Research Conference on Engineering and Technology-IRCET 2016, 

Jun. 28-30, 2016, Bali, Indonesia.
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Deep Learning-Based IDSs (1/6)

• DNN (Deep Neural Network)

1. T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, 

and M. Ghogho, “Deep learning approach for network 

intrusion detection in software defined networking,” in 

Wireless Networks and Mobile Communications 

(WINCOM), 2016 International Conference on. IEEE, 

2016, pp. 258–263.

2. S.S. Roy, A. Mallik, R. Gulati, M.S. Obaidat, and P. 

Krish-na, “A deep learning based artificial neural 

network approach for intrusion detection,” in 

International Conference on Mathematics and 

Computing. Springer, 2017, pp. 44–53.

3. S. Potluri and C. Diedrich, “Accelerated deep neural 

networks for enhanced intrusion detection system,” in 

Emerging Technologies and Factory Automation 

(ETFA), 2016 IEEE 21st International Conference on. 

IEEE, 2016, pp. 1–8.

Figure from T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning 

approach for network intrusion detection in software defined networking,” in Wireless Networks and 

Mobile Communications (WINCOM), 2016 International Conference on. IEEE, 2016, pp. 258–263.
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Deep Learning-Based IDSs (2/6)

• LSTM-RNN (Recurrent NN)

LSTM

RNN

1. J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short 

term memory recurrent neural network classifier for 

intrusion detection,” in Platform Technology and 

Service (PlatCon), 2016 International Conference on. 

IEEE, 2016, pp. 1–5.

2. Y. LIU, S. LIU, and Y. WANG, “Route intrusion 

detection based on long short term memory recurrent 

neural network,” DEStech Transactions on Computer 

Science and Engineering, no.cii, 2017.

3. C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning 

approach for intrusion detection using recurrent neural 

networks,” IEEE Access, vol. 5, pp. 21 954–21 961, 

2017.

4. R. C. Staudemeyer, “Applying long short-term memory 

recurrent neural networks to intrusion detection,” 

South African Computer Journal, vol. 56, no. 1, pp. 

136–154, 2015.

5. L. Bontemps, J. McDermott, N.-A. Le-Khac et al., 

“Collective anomaly detection based on long short-

term memory recurrent neural networks,” in 

International Conference on Future Data and Security 

Engineering. Springer, 2016, pp. 141–152.

6. M. K. Putchala, “Deep learning approach for intrusion   

detection system (ids) in the internet of things (iot) 

network using gated recurrent neural networks (gru),” 

Ph.D. dissertation, Wright State University, 2017.

7. P. K. Bediako, “Long short-term memory recurrent 

neural network for detecting ddos flooding attacks 

within tensorflow implementation framework.” 2017.

Figure from C. Olah, “Understanding LSTM networks,” http://colah.github.io/posts/2015-08-

Understanding-LSTMs/, 2015, [Online; accessed 20-February-2018].
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Deep Learning-Based IDSs (3/6)

• CNN (Convolutional Neural Network)

Figure from Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning 

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–

2324, 1998.

1. Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection using convolutional 

neural networks for representation learning,” in International Conference on Neural 

Information Processing. Springer, 2017, pp. 858–866.
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Deep Learning-Based IDSs (4/6)

• AE (Auto-Encoder)
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Deep Learning-Based IDSs (5/6)

• SAE (Stacked Auto-Encoder)
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Deep Learning-Based IDSs (6/6)

• SAE (Stacked Auto-Encoder)
1. A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning 

approach for network intrusion detection system,” in Proceedings 

of the 9th EAI International Conference on Bio-inspired 

Information and Communications Technologies (formerly 

BIONETICS). ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2016, pp. 

21–26.

2. Y. Yu, J. Long, and Z. Cai, “Session-based network intrusion 

detection using a deep learning architecture,” in Modeling 

Decisions for Artificial Intelligence. Springer, 2017, pp. 144–155.

3. M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. 

Kim, “Deep abstraction and weighted feature selection for Wi-Fi 

impersonation detection,” IEEE Transactions on Information 

Forensics and Security, vol. 13, no. 3, pp. 621–636, 2018.

4. M. E. Aminanto and K. Kim, “Detecting impersonation attack in 

Wi-Fi networks using deep learning approach,” Information 

Security Applications: 17th International Workshop, WISA 2016, 

2016.

5. M. E. Aminanto and K. Kim, “Improving detection of Wi-Fi 

impersonation by fully unsupervised deep learning,” Information 

Security Applications: 18th International Workshop, WISA 2017, 

2017.
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Our SAE Applications

• SAE as a classifier [1]

• Combination of feature extraction and selection [2]

• SAE as a clustering method [3]

1. M. E. Aminanto and K. Kim, “Detecting impersonation attack in Wi-Fi networks using deep 

learning approach,” Information Security Applications: 17th International Workshop, WISA 

2016, 2016.

2. M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, “Deep abstraction and 

weighted feature selection for Wi-Fi impersonation detection,” IEEE Transactions on 

Information Forensics and Security, vol. 13, no. 3, pp. 621–636, 2018.

3. M. E. Aminanto and K. Kim, “Improving detection of Wi-Fi impersonation by fully 

unsupervised deep learning,” Information Security Applications: 18th International Workshop, 

WISA 2017, 2017.
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Deep-Feature Extraction and Selection 

Unsupervised 
Auto Encoding 

Feature Extractor

Input Data

Supervised 
Feature Selection

50+ extracted features

Neural Network 
Classifier

12-22 trained 
features

+
154 features

154 features

Normal

Imper-
sonation

D-FES

Dataset 
Pre-processing

Balancing

Normalization

M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, “Deep abstraction and 

weighted feature selection for Wi-Fi impersonation detection,” IEEE Transactions on 

Information Forensics and Security, vol. 13, no. 3, pp. 621–636, 2018.
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Comparison

1. SAE as a classifier (WISA16)

2. Combination of feature extraction and selection (IEEE IF&S18)

3. SAE as clustering method (WISA17)

Method DR (%) FAR (%)

1 65.178 0.143

2 99.918 0.012

3 92.180 4.400

Kolias et al.* 22.008 0.021

*) Kolias, Constantinos, et al., "Intrusion detection in 802.11 networks: empiric

al evaluation of threats and a public dataset," IEEE Communications Surveys

& Tutorials, vol:18.1, pp: 184-208, 2015.

AWID Dataset
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Summary

The principle of DL is to process hierarchical features
of the provided input data, where the higher-level
features are composed by lower-level features.

DL can discover sophisticated underlying structure
and feature from abstract aspects.

The goal of DL is to learn and output feature repre-
sentation which makes more suitable for feature
engineering.
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Future Challenges

Huge training load in the beginning,

How to apply DL in constrained-computation devic
es.

Incorporating DL models as a real-time classifier.

IDS detecting zero-day attacks with high detectio
n rate and low false alarm rate.

Comprehensive measure not only detection but al
so prevention

etc.
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Comparison

Method
Feature

Extractor
Classifier

Accuracy 
(%)

DNN [1] FF-NN Softmax 99.994

LSTM-RNN-K [2] LSTM-RNN Softmax 96.930

LSTM-RNN-L [3] LSTM-RNN Softmax 98.110

LSTM-RNN-S [4] LSTM-RNN LSTM-RNN 93.820

GRU [5] GRU GRU 98.920

Method
Feature

Extractor
Classifier

Accuracy 
(%)

STL [6] AE Softmax 79.10

DNN-SDN [7] NN NN 75.75

RNN [8] RNN RNN 81.29

CNN [9] CNN CNN 79.14

KDD Cup’99 Dataset NSL KDD Dataset
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Neural Information Processing. Springer, 2017, pp. 858–866.
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Deep Learning-Based IDSs

• GAN

1. A. Dimokranitou, “Adversarial autoencoders for 

anomalous event detection in images,” Ph.D. 

dissertation, Purdue University, 2017.


